Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-Phenyl-1,5-di-2-pyridylpentane-1,5-dione

Leanne James,^a Glenn E. M. Maguire,^b Bice S. Martincigh,^b Vickie McKee^{a*} and Nombuso Ndlovu^b

^aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and ^bSchool of Chemistry, University of KwaZulu-Natal, Howard College, Durban 4041, South Africa

Correspondence e-mail: v.mckee@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.041 wR factor = 0.111Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

The title compound, $C_{21}H_{18}N_2O_2$, shows both π – π stacking of the pyridine groups and significant $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonding.

Received 15 November 2006 Accepted 2 December 2006

Comment

2,2':6',2"-Terpyridine and its derivatives have been widely used for complexation of transition metals (Gao *et al.*, 2003; Sharma *et al.*, 2005). In more recent times there has been a lot of interest in these ligands as synthetic building blocks for supramolecular structures (Hofmeier & Schubert, 2004). Multistep syntheses (Kröhnke, 1976; Collin *et al.*, 1996), as well as single-step approaches for these ligands, have been developed (Tu *et al.*, 2005).

The title compound, (I), is a synthetic intermediate for the compound 4'-phenyl-2,2':6',2"-terpyridine. The synthesis and characterization of the latter have been described previously along with other derivatives (Constable *et al.*, 1990; Moya *et al.*, 2001). The structure of the fluorinated analogue, 3-(4-fluorophenyl)pentane-1,5-bis(2-pyridyl)-1,5-dione, (II), has been reported previously (Constable *et al.*, 1998). A search of the CSD (Version 5.27) showed that no other members of this family have been structurally characterized (Allen, 2002; Fletcher *et al.*, 1996).

The structure of (I) is shown in Fig. 1. The mean planes of the two pyridine rings are inclined at $11.26 \, (7)^{\circ}$. The phenyl ring, comprising C16–C21, is inclined by 87.08 (3)° to the mean plane of the rest of the molecule. The fluorinated analogue (II) is essentially isomorphous with the present compound, the fluorinated phenyl group making no significant difference to the molecular packing. Constable *et al.* (1998) stated that there were neither stacking interactions nor significant short intermolecular contacts in the crystal structure of (II). We have perhaps taken a more liberal view, and observed both π – π stacking and C—H···O/N hydrogen bonding in (I).

Fig. 2 shows a packing diagram, viewed perpendicular to the a axis and illustrates the π - π stacking of the pyridine rings, in which rings comprising N1/C1-C5 alternate with those comprising N2/C11-C15. As mentioned above, the rings are

© 2007 International Union of Crystallography All rights reserved

Acta Cryst. (2007). E63, o153-o155

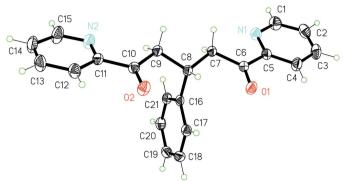


Figure 1
The molecular structure of (I); displacement ellipsoids are drawn at the 50% probability level.

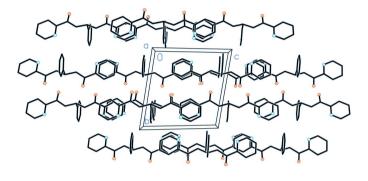


Figure 2 Packing diagram viewed down the a axis and showing π – π stacking. H atoms have been omitted for clarity.

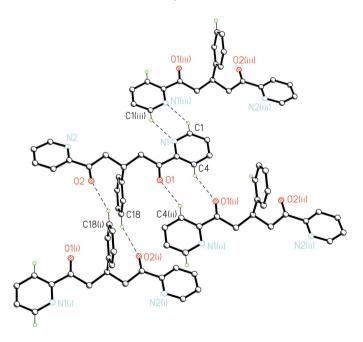


Figure 3 Intermolecular $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes as in Table 1.

inclined at 11.26 (7)°; the centroid–centroid distance is 3.907 Å and the centroid of the N1/C1–C5 ring is 3.684 (1) Å

from the mean plane of the N2/C11–C15 ring under symmetry operation (-1 + x, y, -1 + z).

Three sets of intermolecular hydrogen-bonding interactions are shown in Fig. 3 and listed in Table 1. Each of the interactions is paired by symmetry, giving rise to cyclic patterns which can be described as R_2^2 (16), R_2^2 (10) and R_2^2 (6) for C18—H18···O2ⁱ, C4—H4···O1ⁱⁱ and C1—H1···N1ⁱⁱⁱ, respectively (Etter *et al.*, 1990). The D···A distances and D—H···A angles in these interactions are within the ranges generally observed for such weak hydrogen bonds (Desiraju & Steiner, 1999) and, collectively, they are likely to be responsible for the observed packing.

Experimental

Compound (I) was synthesized as previously reported (Cave & Raston, 2001). The product was recrystallized at room temperature from a methanol-chloroform (1:1) mixture, yielding colourless crystals (m.p. 422–424 K).

Crystal data

$C_{21}H_{18}N_2O_2$	$V = 836.74 (9) \text{ Å}^3$
$M_r = 330.37$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.311 \text{ Mg m}^{-3}$
a = 8.3545 (5) Å	Mo $K\alpha$ radiation
b = 10.3696 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.6370 (7) Å	T = 150 (2) K
$\alpha = 95.208 \ (1)^{\circ}$	Block, colourless
$\beta = 110.924 \ (1)^{\circ}$	$0.45 \times 0.42 \times 0.17 \text{ mm}$
$\gamma = 99.762 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX-II CCD	8223 measured reflections
diffractometer	3832 independent reflections
ω scans	3149 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.019$
(SADABS; Sheldrick, 2003)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.963, T_{\max} = 0.986$	

Refinement

,	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0518P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.1695P
$wR(F^2) = 0.111$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
3832 reflections	$\Delta \rho_{\text{max}} = 0.26 \text{ e Å}^{-3}$
226 parameters	$\Delta \rho_{\min} = -0.24 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
C18—H18···O2i	0.95	2.62	3.4913 (15)	153
C4−H4···O1 ⁱⁱ	0.95	2.42	3.2556 (16)	146
$C1-H1\cdots N1^{iii}$	0.95	2.64	3.4588 (18)	145

H atoms bonded to C and N were inserted at calculated positions and refined using a riding model. The constrained distances were 0.95, 0.99 and 1.00 Å for aryl, methylene and tertiary H atoms, respectively. They were assigned $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm carrier~atom})$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2005). APEX2 (Version 2.1) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cave, G. W. V. & Raston, C. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3258–3264.
- Collin, J.-P., Harriman, A., Heitz, V., Odobel, F. & Sauvage, J.-P. (1996). Coord. Chem. Rev. 148, 63–69.
- Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). *Inorg. Chim. Acta*, 178, 47–54.

- Constable, E. C., Neuberger, M., Smith, D. R. & Zehnder, M. (1998). *Inorg. Chim. Acta*, 275, 359–365.
- Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). *J. Chem. Inf. Comput. Sci.* **36**, 746–749.
- Gao, J., Reibenspies, J. H. & Martell, A. E. (2003). J. Inorg. Biochem. 94, 272–278.
- Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 273-399.
- Kröhnke, K. (1976). Synthesis, pp. 1-24.
- Moya, S. A., Pastene, R., Le Bozec, H., Baricelli, P. J., Pardey, A. J. & Gimeno, J. (2001). *Inorg. Chim. Acta*, **312**, 7–14.
- Sharma, S., Singh, S. K., Chandra, M. & Pandey, D. S. (2005). J. Inorg. Biochem. 99, 458–466.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tu, S., Li, T., Shi, F., Wang, Q., Zhang, J., Xu, J., Zhu, X., Zhang, X., Zhu, S. & Shi, D. (2005). Synthesis, 18, 3045–3050.